GuardRails

GuardRails

  • Languages iconEnglish
    • 中文

›Solidity

Overview

  • Introduction
  • What is GuardRails
  • Getting started
  • Findings
  • Vulnerabilities
  • Configuration
  • Custom Engines
  • False Positives
  • Enforce Passing Checks
  • Build Status on Pull Requests
  • FAQ
  • Pricing
  • Glossary
  • Tools & Licenses

API

  • Usage Guide
  • Endpoints

Vulnerabilities

  • Introduction
  • General

    • Overview
    • Hard-Coded Secrets

    Apex

    • Overview
    • Insecure Access Control
    • Insecure Network Communication
    • Insecure Processing of Data
    • Insecure Use of Cryptography
    • Insecure Use of Language/Framework API
    • Insecure Use of SQL Queries

    C/C++

    • Overview
    • Insecure Access Control
    • Insecure File Management
    • Insecure Processing of Data
    • Insecure Use of Cryptography
    • Insecure Use of Dangerous Function

    Dotnet

    • Overview
    • Insecure Access Control
    • Insecure Configuration
    • Insecure File Management
    • Insecure Processing of Data
    • Insecure Use of Cryptography
    • Insecure Use of Dangerous Function
    • Insecure Use of SQL Queries
    • Using Vulnerable Libraries

    Elixir

    • Overview
    • Insecure Configuration
    • Insecure File Management
    • Insecure Processing of Data
    • Insecure Network Communication
    • Insecure Use of Dangerous Function
    • Insecure Use of Language/Framework API
    • Insecure Use of SQL Queries
    • Using Vulnerable Libraries

    Go

    • Overview
    • Insecure File Management
    • Insecure Network Communication
    • Insecure Processing of Data
    • Insecure Use of Cryptography
    • Insecure Use of Dangerous Function
    • Insecure Use of SQL Queries
    • Using Vulnerable Libraries

    Java

    • Overview
    • Using Vulnerable Libraries
    • Insecure Use of SQL Queries
    • Insecure Use of Dangerous Function
    • Insecure Use of Regular Expressions
    • Insecure Authentication
    • Insecure Configuration
    • Insecure File Management
    • Insecure Use of Cryptography
    • Insecure Use of Language/Framework API
    • Insecure Processing of Data
    • Insecure Network Communication

    Javascript/TypeScript

    • Overview
    • Insecure Authentication
    • Insecure Processing of Data
    • Insecure Use of SQL Queries
    • Insecure Use of Regular Expressions
    • Insecure Use of Language/Framework API
    • Insecure Use of Dangerous Function
    • Using Vulnerable Libraries

    Kubernetes

    • Overview
    • Insecure Access Control
    • Insecure Configuration
    • Insecure Network Communication

    PHP

    • Overview
    • Insecure Configuration
    • Insecure File Management
    • Insecure Network Communication
    • Insecure Processing of Data
    • Insecure Use of Dangerous Function
    • Insecure Use of Language/Framework API
    • Insecure Use of Regular Expressions
    • Insecure Use of SQL Queries
    • Using Vulnerable Libraries

    Python

    • Overview
    • Insecure Configuration
    • Insecure Use of Cryptography
    • Insecure Network Communication
    • Insecure Processing of Data
    • Insecure Use of Dangerous Function
    • Insecure Use of SQL Queries
    • Using Vulnerable Libraries

    Ruby

    • Overview
    • Insecure Access Control
    • Insecure Configuration
    • Insecure File Management
    • Insecure Network Communication
    • Insecure Processing of Data
    • Insecure Use of Dangerous Function
    • Insecure Use of Language/Framework API
    • Insecure Use of Regular Expressions
    • Insecure Use of SQL Queries
    • Using Vulnerable Libraries

    Rust

    • Overview
    • Using Vulnerable Libraries

    Solidity

    • Overview
    • Insecure Integer Arithmetic
    • Insecure Use of Low-Level Call
    • Reliance on Insecure Random Numbers
    • State Change After External Call
    • Transaction Order Dependence
    • Unprotected Critical Function
    • Use of Insecure Function
    • Dependence on Predictable Environment Variables
    • Write to Arbitrary Storage Location
    • Call to Untrusted Contract

    Terraform

    • Overview
    • Hard-Coded Secrets
    • Insecure Access Control
    • Insecure Configuration
    • Insecure Network Communication
    • Insecure Use of Cryptography

Reliance on Insecure Random Numbers

Why is this important?

Ability to generate random numbers is very helpful in all kinds of applications. One obvious example is gambling DApps, where pseudo-random number generator is used to pick the winner. However, creating a strong enough source of randomness in Ethereum is very challenging. For example, use of block.timestamp is insecure, as a miner can choose to provide any timestamp within a few seconds and still get his block accepted by others. Other examples of insecure fields are:

  • blockhash
  • block.difficulty

Secure Random Numbers

Instead of relying on insecure randomness from chain attributes, consider:

  • Using commitment schemes, e.g. RANDAO.
  • Using external sources of randomness via oracles, e.g. Oraclize.
  • Using Bitcoin block hashes, as they are more expensive to mine.

More information:

  • Smart Contract Weakness Classification (SWC 120)
  • Common Weakness Enumeration (CWE-330)
  • RanDAO
← Insecure Use of Low-Level CallState Change After External Call →
  • Why is this important?
  • Secure Random Numbers
  • More information:
  • Status
  • Help
  • Security
  • Terms
  • Privacy

© 2021 GuardRails